
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP023865
TITLE: Design by Contract: A Simple Technique for Improving the Quality
f Software

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Proceedings of the HPCMP Users Group Conference 2004. DoD
High Performance Computing Modernization Program [HPCMP] held in
Williamsburg, Virginia on 7-11 June 2004

To order the complete compilation report, use: ADA492363

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP023820 thru ADP023869

UNCLASSIFIED

Design by Contract: A Simple Technique for Improving the Quality of Software

Mark Bolstad
US Army Research Laboratory (ARL)/ Raytheon, Aberdeen Proving Ground, MD

mbolstad@arl.army.mil

Abstract these two concepts. It is the responsibility of the

programmer to fix all correctness errors.

At its heart, Design by Contract (DbC)Me 971 is a
technique for expressing the relationship between a 2. Design by Contract
software routine (the supplier) and the callers of that
routine (the clients). DbC is inspired by commercialrelaionhip an busnes cotrats tat ormllyAs software developers, our goal is the construction
relationships and busines s contr acethat formally of systems as structured collections of cooperating
express the rights and obligations binding a client and a software elements, communicating on the basis of clear
supplier. DbC provides a clean, easy-to-implement definitions of obligations and benefits.. DbC is the
technique that specifies the roles and constraints mechanism that allows us to express these obligations
applying to a routine, and ultimately, will improve the and benefits in software.
quality of any software with minimal additional cost. In Tony Hoare[Ho are69] said that correctness is a relative
this paper we will define what DbC is, how it can notion and is a consistency of implementation with
benefit any software, and show several examples of respect to a specification. To capture this relation, he
software developed at ARL MSRC that use DbC. e:created the concept known as a Hoare triple:

{P} A {Q}
1. Introduction Where P and Q are assertions and A is a set

of instructions
The quest for quality software rests with two basic The Hoare triple can be interpreted as:

principles: Any execution of A started in a state
Robustness: The ability of software systems to satisfying P will terminate in a state
react appropriately to abnormal conditions. satisfying Q.

Correctness: The ability of software to perform its For a simple example, the following arithmetic

exact tasks as defined by their specification. statement satisfies the Hoare triple:
While closely related, these two principles are not {n > 2} n:= n + 10 {n > 12)

the same. Robustness is the principle of dealing with The Q assertion in this example, n > 12, is not a
events that are beyond the control of the programmer, mistake. Given that P is true, we guarantee that after
e.g., a failure in the network. The wise programmer will the execution of the arithmetic statementithat n will be
put in methods and code to handle these extra ordinary greater than 12. While obvious on the isurface, these
events. Correctness is the principle that the software is types of assertions become of great value in specifying
performing exactly as specified. An error in correctness the correctness of a routine.
is one that is within the programmer's purview to fix. Now that we know the definition of a Hoare triple,
For example, a sorted list class whose list somehow we can let you in on a little secret: DbC is a method of
becomes unsorted is an error of correctness. implementing a Hoare triple in software. First, a little

In the standard style of programming, sometimes terminology from the definition above. P is called a
called Defensive Programming, these two concepts are precondition and Q is called the postcondition. The
confused. In Defensive Programming every error preconditions are the obligations that a caller must
and/or failure should be caught and handled by the satisfy in order to receive the benefit of the work
software. There is no distinction between an error (a performed by the callee. The postconditions specify the
correctness problem) and a failure (a robustness benefit that the caller will receive if the 'preconditions
problem). In DbC, there is a clear distinction between are satisfied.

0-7695-2259-9/04 $20.00 © 2004 IEEE 303

Preconditions and postconditions are implemented * Eiffel was designed with readability in
as assertions. An assertion is a statement that must be mind. Think of Eiffel as pseudo-code that
true at certain points in the execution of the software. executes.
For programmers familiar with the C programming For this example, we will examine a couple of
language, an assertion can be implemented with the routines of a class that manipulates vectors of arbitrary
assert function in the C standard library. Routines size. This class is part of a scene graph library and
may, and usually do, have multiple assertions for both rendering code developed at ARL. Specifically, we will
their preconditions and their postconditions. For a look at the creation of a vector, and adding elements to
routine to be correct, all of the assertions must be true, it.
i.e., the assertions are AND'd together.

Preconditions and post-conditions describe the class VECTOR

properties of individual routines. In an object-oriented feature - - Initialization
make (the-count: INTEGER) is

language, there is also a need for expressing the -- Make a zero vector with given
conditions of a class as a whole. These conditions that number of components.
describe the semantic meaning of the class are called the do
invariant. In the context of the Hoare triple, the - - take a vector

invariant is evaluated before the precondition and after else
the postcondition, i.e., using the notation below -- Indicate error

end
{invariant and P} A {Q and invariant} end

For example, the invariant of a class that maintains
a sorted list is that the list is sorted. So in the definition feature -- Element change
above, the list must be in a sorted state before and after put (value: DOUBLE;

the execution of A, but A is allowed to violate the -- Assign 'value' to component
invariant and reorder the list during its execution as long at 'index'.

as it is restored upon exit of the routine, if index > 0 and
Another type of instruction used in DbC is the index <= count then

check instruction. This assertion allows the software -- Add the value
developer to express their conviction that a particular end

condition must be true at a certain point in the software.

For example, after performing a calculation, say a This is "typical" for the defensive style of
matrix inversion, a check statement can be inserted to programming. Since the possible values for the input
see if the matrix is truly inverted, parameters are unknown, code is added to protect the

One of the features that make DbC so attractive is critical sections from bogus values. In addition, we may
that the control of assertions is a compile-time option. have redundant checking of the input. The client checks
During the development of the software, all assertions the values to ensure that they are correct, and then the
are enabled. Depending on the extent of the assertions supplier checks again to determine how to handle the
used, full assertion checking may result in a slowdown input. Note that there is no specification that tells the
of the system by a factor of 2-20 or higher. Typically, client what set of values constitutes a valid range of
when the software is ready to be beta tested, the input. If the client provides a negative count to the
developer will then choose to deploy a version with just make routine, is it an error? The advantage of DbC is
precondition checking enabled. Upon release of the that it makes the responsibilities of the client and the
final version, all of the assertions can be disabled for supplier clear.
maximum system performance. Now let's look at this class again using DbC and

assertions. In Eiffel, preconditions are listed in a
2. Implementing Design by Contract require statement, and postconditions in an ensure

statement. Also, this example assumes the presence of

Let's start off this section with a simple example to other routines to help check with the postconditions.
show the principles behind DbC. First, a note about the These routines are not listed here, but their function
notation we will be using for several of the examples. should be fairly obvious from their names.
The examples are written in the programming language
Eiffel[Meye' 921. Eiffel was chosen for several reasons:

* Eiffel was the first language to support
DbC. As a consequence, Eiffel has the most
robust support for DbC.

304

class VECTOR invariant
feature -- Initialization no-nan items: is nan free

make (the-count: INTEGER) is countstrictly positive: count >= 1
-- Make a zero vector with given iszeroiscorrect: is-zero implies

number of components. (magnitudesquared = 0.0 and
require magnitude = 0.0 and twionorm =

positivelength: thecount > 0 0.0 and
do one _norm = 0.0 and max norm = 0.0)

-- Make a vector magnitude is non negative:
ensure magnitude >= 0.0

count is length: count = magnitudesquared is non negative:
thecount magnitudesquared >= 0.0
iszero: iszero twonorm is magnitude:

end two norm = magnitude
onenorm is-nonnegative: one_norm >=

feature -- Element change 0.0 1

put (value: DOUBLE; one_norm is largeenough: ((count = 1
index: INTEGER) is implies (onenorm + Tolerance >=

-- Assign -value' to component absolutevalue (item (1))))
at -index'. or else

require (one norm + Tolerance >=
non nan value: not is nan (absolute value (item (1))+

(value) absolute-value (item
valid index: index >= 1 and (count)))))

index <= count maxnorm is non negative: maxnorm >=
do 0.0

-- Add the value maxnorm is largeenough: max norm >=
ensure absolute value (item (1) and

assigned: item (index) = value max norm >=
end absolute value (item (count))

maxnorm-is small-enough:
max-norm <= one norm

The first thing to notice is that the benefits and magnitude-scorrect: -
obligations are now clearly defined. For the make aboutequal (magnitude,
routine, if thecount is positive, then this routine squareroot
guarantees a vector of the correct size and initialized to (magnitudesquared))

is unit correct:
zero. The second item to notice is that the executable s- unit implies
statements are no longer "protected" as in the defensive within-range (magnitude,
programming example. Since we are guaranteed that 1.0- Tolerance,!

1.0 + Tolerance)the input values meet the specification, there is no need pound-with self is magnitude squared:
to check these values, thus simplifying our code. Also, - aboutequal (Current #
since we will occur no runtime penalty for the final code Current,
(all assertions are off), we can make the assertions more magnitude squared)

dot with self is magnitude squared:
elaborate and extensive. aboutequal (dot (Current),

The assertions clearly delineate the responsibilities magnitude squared)
of both the client and the supplier. A failure of the zero is correct: zero. is_zero

precondition is an error in the client. A failure of the unit is correct: magnitude /= 0.0implies unit.is unit
postcondition or the class invariant is an error of the u i
supplier.

For completeness, the listing below shows the class 3. Design by Contract in HPC Codes
invariant for the VECTOR class we've been examining.
When testing the VECTOR class with full assertion Now that we have seen how useful assertions can
checking, each of the statements below is executed be, we would like to add them into ne' and existing
before and after each externally called routine in the HPC codes. Since most HPC codes are not written in
class. This excerpt below is typical of the invariants Eiffel (maybe they should be, but that would be a
that are utilized in this library: different paper), we need a way to implement assertions

in the context of frequently used languages of HPC
codes, C, C++, and FORTRAN. Todd Plessel, while
under contract for the US Environmental Protection
Agency, developed a set of tools and techniques that
allow the use of DbC in FORTRAN90, C, and C++.
Since these languages to not have built-in support for
DbC, they lack some of the capabilities of Eiffel;

305

however they are expressive enough for most of the istrstream Tag(TagName, strlen(TagName));
situations that are encountered in HPC codes.

To illustrate how we can add DbC to existing code, Tag > c;
we will show a simple example that adds assertions to double d;
the Extensible Data Modeling Format (XDMF) Tag >> d;

developed by Jerry Clarke at ARL. XDMF is a C++ Id = (Xdmflnt64)d;

code for describing data formats and facilitates the XdmfArray* val=XDMFArrayList.array(id);
linking of computational models. For clarity, we will
show an original routine, and then the same routine POST2 (val I = 0,.
modified with assertions. Listed below is the original TagName) == 0
routine that takes a string as input and returns the return(val);
corresponding XdmfArray.

XdmfArray * It is possible to simplify the routine further by
TagNameToArray (XdmfString TagName) { pushing the computation of the Id into the array routine of
char C; XDMFArrayList. Using the tools that were developedXdmf Int64 i, Id;

istrstream Tag(TagName, strlen(TagName)) ; along with the header files, it is possible to create a
documentation of the assertions for distribution to a client

Tag >> c; of the routine. In this way, it is possible to use
if(c != ' ') 1 information hiding and encapsulate the implementation,

XdmfErrorMessage("Invalid Array Tag
Name: " << TagName); whilel still providing the client with the complete

return (NULL) ; contract. Shown below is the output from short, a script
tool that extracts comments and assertion information

double d;
Tag >> d; from the source code to create a set of documentation,
Id = (XdmfInt64)d; similar to doxygen[d xygen] .

for(i = 0 ; i < XdmfArray *
XDMFArrayList .ListLength; TagNameToArray (XdmfString TagName)
i++) { // Use the appropriate macro for the

if (XDMFArrayList.List[i] .timecntr // number of preconditions
Id) { PRE3(TagName != 0,

return(XDMFArrayList.List[i] .Array); strlen(TagName) > 0,
XDMFArrayList.has(TagName));

} POST2(val != 0,
XdmfErrorMessage("No Array found with Tag strcmp(val->GetTagName(),
Name: " << TagName); TagName) == 0);
return (NULL);

For completeness, we show a simple Fortran90
In order to properly utilize DbC and assertions, we example with assertions.

need to add several utility routines to facilitate the I Set DENOMINATOR to NEW DENOMINATOR.
checking of parameters to the routine. For clarity we SUBROUTINE FRACTION SE-T DENOMINATOR
will not list the routines, but briefly describe them here. (SELF, NEW-DENOMINATOR)

Has(arrayname) returns a boolean if arrayname is in the TYPE (FRACTION) , INTENT (OUT) :: SELF

list of arrays (an internal data structure). INTEGER (KIND=8), INTENT (IN) : :NEWDENOMINA

XdmfArrayList.array(tag) returns the array associated TOR
with tag. PRE (NEWDENOMINATOR/=0_8)

SELF%DENOMINATOR = NEWDENOMINATOR#include <Assertions .h
// The header file to enable DbC POST(DENOMINATOR(SELF) ==
... •NEWDENOMINATOR)

RETURN
XdmfArray * END SUBROUTINE
TagNameToArray(XdmfString TagName) { FRACTION SET DENOMINATOR
// Use the appropriate macro for the - -
// number of preconditions
PRE3(TagName != 0, 4. Conclusion

strlen(TagName) > 0,
XDMFArrayList.has(TagName));

char C; In this paper we have provided a brief introduction to
XdmfInt64 i, Id; the concepts behind DbC, and showed how it is relatively

306

simple to add assertions to existing HPC code. Using i
assertions will have a remarkable effect on the quality of References
software being developed, and can improve the runtime
performance by removing excess defensive programming [doxygen] http://www.doxygen.org
code that is no longer necessary.

And since the assertions do not affect the [Hoare69] Hoare, C.A.R., "An Axiomatic Basis for Computer

performance of the final run-time, more elaborate types of Programming", in Communications of the ACM, vol. 12, no.

error checking can be added. This will allow the software 10, October 1969.
developer to add improved correctness information earlier [Meyer92]. Meyer, B., "Eifel: The Language" Prentice Hall,
in the development cycle. The earlier errors are caught in 192

r [Meyer97] Meyer, B., Object-Oriented Software Construction,th e d evelop m en t cy cle, th e easier th ey are to fi x , w h ich S c n d t o ,P e t c al p e a d e R v r J 9 7
leads to our original statement: DbC is a step on the road Second Edition, Prentice Hall, Upper Saddle River, NJ, 1997,
toward quality software. pp. 3-19, 39-64.

307

